Parallel Processing Mechanisms

- 1. Multiplicity of functional units
- 2. Parallelism and pipelining within the CPU
- 3. Overlapped CPU and I/O operations
- 4. Use of a hierarchical memory system
- 5. Balancing of subsystem bandwidths
- 6. Multiprogramming and time sharing

1. Multiplicity of functional units

- Early computers
 - one ALU that perform one operation at a time.
 - Slow process
- Multiple and specialized functional units.
 - operate in parallel.
- IBM 360/91 →
 - two parallel execution units (fixed and floating point arithmetic)
- CDC-6600 \rightarrow
 - 10 functional units

System Architecture of CDC-6600

2. Parallelism and pipelining within CPU

- Parallel Adders
 - bit serial adders.
 - carry-lookahead and carry save adders.
- Multiplier recoding and convergence division.
- Phases of instruction execution are pipelined
 - Instruction fetch, decode, operand fetch, arithmetic logic execution, store result.
- Instruction Prefetch and data buffering.

3. Overlapped CPU and I/O operations

- I/O operations performed simultaneously with CPU computations
 - separate I/O controllers, channels or I/O processors.
- DMA channels cycle stealing.

5. Balancing of subsystem

- $t_d > t_m > t_p$
- Bandwidth of a system
 - no: of operations performed per unit time.
- Memory bandwidth (B_m)
 no: of words that can be accessed per unit time.

$$B_m = \frac{W}{t_m}$$

- Processor bandwidth (B_p)
 - max: CPU computation rate.
 - □ Ex: Cray-1 \rightarrow 160 MFLOPS

- I/O bandwidth (B_d)
 - Average data transfer rate.
 - Ex: Modern drives has B_d = 1 megabyte/sec

Utilization bandwidth of memory (B_m^u) $B_m^u = \frac{B_m}{\sqrt{M}}$ and $B_m^u \le B_m$ Utilization bandwidth of CPU

$$B_p^u = \frac{\pi_w}{T_p}$$

 $B_m \geq B_m^u \geq B_p \geq B_p^u \geq B_d$

- Utilization bandwidth of I/O (B_d^u)
 - Iower than the actual bandwidth.

Relationship b/w BWs

- Bandwidth balancing between CPU and memory.
 - Cache memory
- Bandwidth balancing between memory and I/O
 - Buffer
 - Multiplexing
- Totally balanced system

$$B_p^u + B_d = B_m^u$$
 where $B_p^u = B_p$ and $B_m^u = B_m$

6. Multiprogramming and time sharing

- Batch processing
 Sequential execution
- Multiprogramming
 - Interleaving of CPU and I/O operations among several programs
- Time sharing
 - Assign fixed or variable time slices to multiple programs

National Tsing Hua University

11

Fig. 1.8. Time Shared Processing

